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Abstract. Using a field-theoretic approach, we derive the first few coefficients of the exact low-density
(“virial”) expansion of a binary mixture of positively and negatively charged hard spheres (two-component
hard-core plasma, TCPHC). Our calculations are nonperturbative with respect to the diameters d+ and
d− and charge valences q+ and q− of positive and negative ions. Consequently, our closed-form expressions
for the coefficients of the free energy and activity can be used to treat dilute salt solutions, where typically
d+ ∼ d− and q+ ∼ q−, as well as colloidal suspensions, where the difference in size and valence between
macroions and counterions can be very large. We show how to map the TCPHC on a one-component hard-
core plasma (OCPHC) in the colloidal limit of large size and valence ratio, in which case the counterions
effectively form a neutralizing background. A sizable discrepancy with the standard OCPHC with uniform,
rigid background is detected, which can be traced back to the fact that the counterions cannot penetrate
the colloids. For the case of electrolyte solutions, we show how to obtain the cationic and anionic radii as
independent parameters from experimental data for the activity coefficient.

PACS. 82.70.-y Disperse systems; complex fluids – 52.25.-b Plasma properties – 61.20.Qg Structure
of associated liquids: electrolytes, molten salts, etc.

1 Introduction

The two-component hard-core plasma (TCPHC) has been
used for a long time as an idealized model for electrolyte
solutions. In this model, also known as “primitive mod-
el”, the ions are spherical particles that interact with each
other via the Coulomb potential and a hard-core potential,
which avoids the collapse of oppositely charged particles
onto each other. In the general asymmetric case, the pos-
itive ions have a charge q+e (where e is the elementary
charge) and ionic diameter d+, while the negative ions
have a charge −q−e and diameter d−. The particles are
immersed in a structureless solvent whose presence is felt
only through the value of the dielectric constant of the
medium, and the system is (globally) electroneutral.

The TCPHC in this formulation is a gross simplifica-
tion of real systems. When two ions are at distances of
the order of the size of the solvent molecules, the assump-
tion of a continuum solvent breaks down, giving rise to
so-called solvation forces [1]. Such effects also lead to non-
local contributions to the dielectric constant. Since the
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dielectric constant of ions or colloids typically differs from
the surrounding aqueous medium, one also expects disper-
sion forces to act between these particles. All these effects,
which contribute to “ion-specific” effects [2], and are pos-
sibly more relevant than previously thought [3], are not
accounted for in the TCPHC, which treats the solvent —
usually water — as a structureless medium within which
the charged particles are embedded, neglecting the molec-
ular arrangement that occurs around the ions.

Nevertheless, even with such simplifications, the TCP-
HC is far from being amenable to an exact treatment. A
better understanding of this model is a necessary step if
one wishes to develop more realistic approaches to charged
systems. In this article, we turn our attention to the low-
density, or virial, expansion of the TCPHC. Since we have
exact results for the thermodynamic properties at low con-
centrations using field-theoretic methods, we can obtain
useful information on dilute systems with otherwise ar-
bitrary hard-core radii and charge valences (like colloidal
suspensions). In particular, we can test various approx-
imations to treat the TCPHC, like the mapping of a
colloidal solution on an effective one-component plasma.

Due to the long-range character of the Coulomb po-
tential, it is not easy to obtain the thermodynamic be-
havior of the TCPHC through the usual methods of sta-
tistical mechanics. For example, it can be shown [4–6] that
the straightforward application of the cluster expansion to
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the TCPHC leads to divergent virial coefficients. Mayer [4]
proposed a solution to this problem through an infinite re-
summation of the cluster diagrams, carried out such that
the divergent contributions to the virial expansion are can-
celed. With this, he was able to obtain explicitly the first
term in the virial (or low-density) expansion that goes be-
yond the ideal gas, which turns out to be the well-known
Debye-Hückel limiting law [7]. Haga [8] carried the expan-
sion further and went up to order 5/2 in the ionic density.
More or less at the same time, Edwards [9] also obtained
the virial expansion of the TCPHC by mixing cluster ex-
pansion and field theory. In both cases only equally-sized
ions were considered.

The aforementioned methods typically depend on
drawing, counting and recollecting the cluster diagrams
which give finite contributions to the expansion up to the
desired order in the density. This can be quite a formidable
task, and unfortunately it is easy to “forget” diagrams
that are relevant to the series (see for instance the com-
ment on pp. 222–223 of Ref. [5]). Also, the generalization
to ions with different sizes is rather complicated [5]. Be-
sides, the final results are typically not obtained in closed
form, i.e., the final expressions depend on infinite sums
that usually have to be evaluated numerically, which re-
flects the infinite diagrammatic resummation.

We generalize here a novel field-theoretic tech-
nique [10], introduced for the symmetric TCPHC (q+ =
q− and d+ = d−). We obtain the exact low-density expan-
sion of the asymmetric (both in size and charge) TCPHC.
This method does not use the cluster expansion (and re-
summation) and yields analytic, closed-form results. We
go up to order 5/2 in the volume fraction of a system where
the sizes and the charge valences of positive and negative
ions are unconstrained, that is, the results we obtain can
be applied, without modifications, to both electrolyte so-
lutions (where anions and cations have approximately the
same size and valence) and to colloidal suspensions (where
the macro- and counterions have sizes and valences that
can be different by orders of magnitude). In the colloidal
limit, we demonstrate how to map the TCPHC on an ef-
fective one-component hard-core plasma (OCPHC) and
obtain the corrections due to the exclusion of the back-
ground (i.e. the counterions) from the colloidal particles.
For electrolytes, we obtain effective ionic sizes in solution,
or thermodynamic diameters, from experimental data for
the mean activity. The method developed here allows, in
principle, to measure the diameters of cations and anions
as independent variables, given that the range of experi-
mental data extends to low enough densities such that the
expansion used here is valid. It should be noted that the
diameters obtained in this way are fundamentally different
from the hydrodynamic diameters.

This article is organized as follows. In Section 2 we
describe in detail the steps that lead to the low-density
expansion. Readers which are not interested in this deriva-
tion can go directly to Section 3, where we apply the ex-
pressions obtained to two particular problems, viz., (i) col-
loids, where one of the charged species is much smaller and
much less charged than the other one and (ii) the mean

activity coefficient (which is related to the exponential of
the chemical potential) of electrolyte solutions, which is
available from experiments and can be compared to our
results. Finally, Section 4 contains some concluding re-
marks.

2 The method

We begin our calculation by assuming a system with N+

positively charged particles with charge valence q+ and
diameter d+, and N− negatively charged particles with
charge valence q− and diameter d−. Global electroneutral-
ity of the system will be imposed at a later stage of the
calculation. The canonical partition function Z is given by

Z =
1

N+!N−!

∫ N+∏
i=1

dr(+)
i

λ3
T,+

N−∏
j=1

dr(−)
j

λ3
T,−

exp
(
− H
kBT

)
(1)

where λT,+ and λT,− are the thermal wavelengths, and
r(+)
i and r(−)

i are the positions of positively and negatively
charged particles. The Hamiltonian H is given by

H
kB T

= −Eself +
1
2

∑
α,β=+,−

∫
drdr′ ρ̂α(r)ωαβ(r−r′)ρ̂β(r′)

+
1
2

∫
drdr′ [ρ̂+(r) − ρ̂−(r)]vc(r − r′)[ρ̂+(r′) − ρ̂−(r′)]

(2)

where the charge-density operators of the ions are de-
fined as

ρ̂+(r) = q+

N+∑
i=1

δ
(
r − r(+)

i

)

ρ̂−(r) = q−
N−∑
i=1

δ
(
r− r(+)

i

)
, (3)

and δ(r − r′) is the Dirac delta function. The indices α
and β in equation (2) stand for + and −, and the sum
over α and β in equation (2) runs over all possible per-
mutations (viz. ++, −−, −+ and +−), i.e., we consider a
different short-ranged potential ωαβ for each combination.
The Coulomb potential is given by vc(r) = `B/r, where
`B ≡ e2/(4 π ε kB T ) is the Bjerrum length, defined as the
distance at which the electrostatic energy between two el-
ementary charges equals the thermal energy kBT . Finally,
Eself is the self-energy of the system

Eself =
N+q

2
+

2
[ω++(0) + vc(0)] +

N−q2−
2

[ω−−(0) + vc(0)]

(4)

which cancels the diagonal terms in equation (2).
We proceed by applying the Hubbard-Stratonovich

transformation, the essence of which is given by

e−
1
2

R
drdr′ ρ̂(r)v(r−r′)ρ̂(r′) =∫ Dφ e−

1
2

R
drdr′ φ(r)v−1(r−r′)φ(r′)−ı R drφ(r)ρ̂(r)∫ Dφ e−

1
2

R
drdr′ φ(r)v−1(r−r′)φ(r′)

(5)
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where v(r) is some general potential and
∫ Dφ denotes a

path integral over the fluctuating field φ. While this trans-
formation can be used without problems when v(r) is the
Coulomb potential, for a short-ranged potential this can
be more problematic: for instance, a hard-core potential
does not even have a well-defined inverse function. We will
anyway take this formal step for the short-ranged poten-
tial, and, as we will see later, the way we handle the re-
sulting expressions leads to finite (and consistent) results,
viz., the virial coefficients [11].

Applying equation (5) to equation (1) we obtain the
partition function in field-theoretic form

Z =
∫ Dψ+ Dψ−

Zψ
Dφ
Zφ e−H̄0 W+W− (6)

with the action

H̄0 =
1
2

∑
α,β=+,−

∫
drdr′ ψα(r)ω−1

αβ (r − r′)ψβ(r′)

+
1
2

∫
drdr′ φ(r)v−1

c (r − r′)φ(r′). (7)

The inverse potentials are formally defined as the solution
of the equation∑
β=+,−

∫
dr′ ωαβ(r − r′)ω−1

βγ (r′ − r′′) = δαγ δ(r − r′′) (8)

(δαγ is the Kronecker delta) and∫
dr′ vc(r − r′)v−1

c (r′ − r′′) = δ(r − r′′). (9)

For the Coulomb potential, v−1
c (r) = −∇2δ(r)/4π`B. We

also define

Wα=
1
Nα!

[
eq

2
α

[
ωαα(0)+vc(0)

]
/2

×
∫

dr
λ3
T,α

e−ıqα

[
ψα(r)+αφ(r)

]]Nα

(10)

and the normalization factors

Zψ =
∫

Dψ+ Dψ− e
− 1

2
P

αβ

R
drdr′ ψα(r)ω−1

αβ
(r−r′)ψβ(r′)

(11)

and

Zφ =
∫

Dφ e−
1
2

R
drdr′ φ(r)v−1

c (r−r′)φ(r′). (12)

In order to make the calculations simpler we use the grand-
canonical ensemble. This is achieved through the transfor-
mation

Q =
∞∑

N+,N−=0

Λ
N+
+ Λ

N−
− Z, (13)

where Λ+ and Λ− are, respectively, the fugacities (expo-
nential of the chemical potential) of the positively and
negatively charged particles. We perform the sum overN+

and N− without constraints, i.e., without imposing the
electroneutrality condition q+N+ = q−N−. Imposing this
condition before going to the grand-canonical ensemble
makes the calculations much more difficult. Later, elec-
troneutrality will be imposed order-by-order in the low-
density expansion in a consistent way, any infinities aris-
ing from the non-neutrality of the system will then be
automatically canceled.

In its full form, the grand-canonical partition func-
tion Q reads

Q =
∫ Dψ+ Dψ−

Zψ
Dφ

Zφ exp

(
Λ+

λ3
T,+

∫
drh+(r)e−iq+φ(r)

+
Λ−
λ3
T,−

∫
drh−(r)eiq−φ(r) − H̄0

)
, (14)

where H̄0 is given in equation (7). We defined the local
non-linear operator

hα(r) ≡ exp
(
q2α
2
[
ωαα(0) + vc(0)

]− ıqαψα(r)
)

(15)

(as before, α stands for both + and −). At this point we
rescale the fugacities such that λ+ = Λ+/λ

3
T,+ and λ− =

Λ−/λ3
T,−, i.e., the fugacities have from now on dimensions

of inverse volume.
Introducing the Debye-Hückel propagator,

v−1
DH(r − r′) = v−1

c (r − r′) + I2δ(r − r′) (16)

with the ionic strength

I2 = q2+λ+ + q2−λ− (17)

and after some algebraic manipulations, we finally ob-
tain the grand-canonical free energy density. It is defined
through g ≡ − ln

(Q)/V , and reads

g = −λ+ − λ− − 1
2
I2vc(0) − 1

V
ln
(ZDH

Zφ

)
− 1
V

ln
〈
eλ+

R
drQ+(r)+λ−

R
drQ−(r)

〉
, (18)

where V is the volume of the system and the brackets
〈· · · 〉 denote averages over the fluctuating fields φ and ψα
with the propagators ω−1

αβ and v−1
DH. ZDH is defined as

ZDH =
∫

Dφ e−
1
2

R
drdr′ φ(r)v−1

DH(r−r′)φ(r′) (19)

and the functions Q+(r) and Q−(r) are defined by

Qα(r) = hα(r)e−ıα qαφ(r) − 1 +
1
2
q2αφ

2(r) − 1
2
q2αvc(0).

(20)



86 The European Physical Journal D

In the preceding steps we obtained the exact expression
for the grand-canonical free energy density g, still with-
out imposing electroneutrality. In order to obtain the low-
density expansion of the free energy, we now (i) expand g
in powers of λ+ and λ− (up to a order 5/2), (ii) calculate
the concentrations of positive and negative particles and
impose electroneutrality consistently, order-by-order, and
(iii) make a Legendre transformation back to the canonical
ensemble.

2.1 Expansion in powers of the fugacities

We start the expansion of g by noting that the Fourier
transform of the Coulomb potential is ṽc(k) = 4π`B/k2.
Using this, one is able to express vc(0) as

vc(0) =
∫

dk
(2π)3

4π`B
k2

· (21)

It is easy to show that

1
V

ln

(
ZDH

Zφ

)
= −1

2

∫
dk

(2π)3
ln

(
1 +

4π`BI2
k2

)
· (22)

Using equations (21, 22), one finds

1
2
I2vc(0) +

1
V

ln

(
ZDH

Zφ

)
=

1
12π

[
4π`BI2

]3/2
. (23)

Introducing the dimensionless quantity

∆v0 =
√

4π`3BI2 (24)

and expanding the last term in the rhs of equation (18)
in cumulants of Q+(r) and Q−(r), one obtains the low-
fugacity expansion

g = −λ+ − λ− − ∆v3
0

12π`3B
− λ+Z

+
1 − λ−Z−

1 − λ2
+

2
Z++

2

− λ2−
2
Z−−

2 − λ+λ−Z+−
2 +O(λ3), (25)

where the coefficients are given by

Z+
1 =

1
V

∫
dr
〈
Q+(r)

〉
(26)

and an analogous formula for Z−
1 , and

Z++
2 =

1
V

∫
drdr′

{〈
Q+(r)Q+(r′)

〉− 〈Q+(r)
〉〈
Q+(r′)

〉}
(27)

and similar formulas for Z−−
2 and Z+−

2 . The symbolO(λ3)
in equation (25) means that any other contribution to the
expansion will be of order 3 or higher, i.e., with terms like
λ3

+, λ2
+λ−, etc. Clearly, the expectation values in equa-

tions (26, 27) contain additional dependencies on the fu-
gacity λα via the DH propagator, equation (16), but, and

this stands at the very core of our method, all expectation
values can itself be expanded with respect to λα and have
finite values as λα → 0.

In order to do a full expansion of equation (25), one
needs first to calculate the coefficients Z+

1 , etc., in equa-
tion (25), for which the averages given in the appendix are
needed, cf. equations (78–82). Since vc(0)−vDH(0) = ∆v0,
we obtain

Zα1 = eq
2
α∆v0/2 − 1 − 1

2
q2α∆v0 (28)

and

Zαβ2 =
∫

dr

{
e[q2α+q2β ]∆v0/2

[
e−qαqβ [ωαβ(r)+αβ vDH(r)] − 1

]
+

1
2
q2αq

2
βv

2
DH(r)

[
1 − eq

2
α∆v0/2 − eq

2
β∆v0/2

]}
· (29)

Note that

vDH(r) =
`B
r

e−∆v0r/`B (30)

was defined (through its inverse function) in equation (16).
We now introduce the hard-core through the short-range
potentials

ωαβ(r) =

{
+∞ if r <

(
dα + dβ

)
/2,

0 otherwise,
(31)

where the indices α and β stand again for + and −; d+

and d− are respectively the (effective) ionic diameters of
the positive and negative particles.

Since the expressions for Z+
1 , etc., do depend on λ+

and λ−, and in order to have a consistent expansion of g
in the fugacities, one has to expand equations (28, 29) in
powers of λ+ and λ−, up to the appropriate order, before
inserting them into g, equation (25). By doing this con-
sistently up to order 5/2 in the fugacities, one obtains the
rescaled grand-canonical free energy density

g̃ ≡ d3
+g =

− λ̃+ − λ̃− −m1λ̃
2
+ −m2λ̃

2
− −m3λ̃+λ̃− −

[
n1λ̃

2
+

+n2λ̃
2
− +n3λ̃+λ̃−

]
∆v0−

[
p1λ̃

2
+ +p2λ̃

2
− +p3λ̃+λ̃−

]
ln∆v0

−
[
r1λ̃

2
+ + r2λ̃

2
− + r3λ̃+λ̃−

]
∆v0 ln∆v0 −

[
s1λ̃+

+s2λ̃−
]
∆v2

0 −
[
t0 + t1λ̃+ + t2λ̃−

]
∆v3

0 +Ω0

[
q+λ̃+−q−λ̃−

]
−∆v0

{
Ω1

[
q+λ̃+ − q−λ̃−

]2
−Ω0

[
q4+λ̃

2
+ + q4−λ̃

2
−

− 2q+q−
[q2+ + q2−

2

]
λ̃+λ̃−

]}
+O(λ̃3), (32)

where we used dimensionless fugacities

λ̃+ ≡ d3
+λ+ (33)
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and

λ̃− ≡ d3
+λ−. (34)

In this expansion, we utilized that ∆v0 scales like λ̃1/2.
The coefficients m1, etc. are given explicitly in the ap-
pendix, equations (83–92).

The coefficients Ω0 and Ω1 are given by the divergent
integrals

Ω0 = 2π`B

∞∫
0

dr r

Ω1 = 2π

∞∫
0

dr r2. (35)

These terms are present in equation (32) because global
charge neutrality has not been yet demanded. By imposing
this condition, these divergent terms cancel exactly, as is
shown next.

2.2 Imposing electroneutrality

The electroneutrality condition ensures that the global
charge of the system is zero, i.e., q+N+ = q−N−. In the
grand-canonical ensemble, N+ and N− are no longer fixed
numbers but average values. This means that the elec-
troneutrality condition in the grand-canonical ensemble is
given by

q+〈N+〉 = q−〈N−〉. (36)

Defining the rescaled ion density

c̃+ = d3
+〈N+〉/V, (37)

it is easy to show that

c̃+ = −λ̃+
∂g̃

∂λ̃+

(38)

with an analogous formula for c̃−; c̃+ is the volume frac-
tions of the positive ions [12]. As one imposes equa-
tion (36), the fugacities will depend on each other in a
non-trivial way such that the system is, on average, neu-
tral. If the system were totally symmetric (i.e., q+ = q−
and d+ = d−), this dependence would be given by the
relation λ̃+ = λ̃− [10]. However, this is not the case here:
one needs to find the relation between the fugacities order-
by-order.

First, assume that λ̃− can be expanded in terms of λ̃+

such that

λ̃− = a0λ̃+ + a1λ̃
3/2
+ + a2λ̃

2
+ + a3λ̃

2
+ ln λ̃+

+ a4λ̃
5/2
+ + a5λ̃

5/2
+ ln λ̃+ +O(λ̃3

+). (39)

This is inspired by the expanded form of the grand-
canonical free energy g̃, equation (32).

After calculating c̃+ and c̃− from g̃, equation (32), ac-
cording to equation (38), and insertion into the electroneu-
trality condition (Eq. (36)), we substitute the fugacity λ̃−
by its expanded form equation (39). This leads to the
expanded form (up to order λ̃5/2

+ ln λ̃+) of the electroneu-
trality condition. Solving it consistently, order-by-order,
yields the values of the coefficients in equation (39), which
ensure electroneutrality order by order. For instance, at
linear order in λ̃+, the expanded form of equation (36)
reads

q+ − a0q− = 0, (40)

which naturally gives a0 = q+/q−. With the knowledge
of a0, one can solve the next-order term (in this case λ̃3/2

+ )
and obtain the value of a1, and so on. The resulting co-
efficients a0 up to a5 are given in Appendix — cf. equa-
tions (93–98).

As this order-by-order neutrality condition is imposed,
one notices that the terms Ω0 and Ω1 in equation (32) are
exactly canceled in a natural way, without any further as-
sumptions. The resulting expression for g̃, now expanded
only in one of the fugacities (in this case λ̃+), is then a
well behaved expansion (we omit this expression here since
it is quite lengthy). With this, one can finally obtain the
canonical free energy (as a density expansion) through a
Legendre transform.

2.3 The canonical free energy

In order to obtain the free energy in the canonical ensem-
ble, we use the back-Legendre-transformation

f̃ = g̃ + c̃+ ln
(
λ̃+

)
+ c̃− ln

(
λ̃−
)
, (41)

where the dimensionless canonical free energy density is

f̃ ≡ d3
+F/V kBT (42)

(F is the canonical free energy). Note that at this point
λ̃− is a function of λ̃+, according to equation (39).

The first step to obtain f̃ is to invert the expression
given in equation (38) such that λ̃+ is obtained as an ex-
pansion in c̃+, neglecting any terms of order c̃3+ or higher.
With this, we obtain λ̃+ = λ̃+(c̃+): plugging this into
equation (41), we finally obtain f̃ , which reads

f̃ = f̃id +BDHc̃
3/2
+ +B2c̃

2
+ +B2logc̃

2
+ ln c̃+

+B5/2c̃
5/2
+ +B5/2log c̃

5/2
+ ln c̃+ +O

(
c̃3+
)
. (43)

Defining the valence ratio parameter

η ≡ q−/q+, (44)

the diameter ratio parameter

ξ ≡ d−/d+, (45)
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and the coupling parameter

ε+ ≡ q2+`B/d+ (46)

(which is the ratio between the Coulomb energy at con-
tact between two positive ions and the thermal energy
kBT ), the coefficients in equation (43) can be explicitly
written as

f̃id = c̃+ ln c̃+ +
c̃+
η

ln
(
c̃+
η

)
−
[
1 +

1
η

]
c̃+ (47)

which is the ideal contribution to the free energy,

BDH = −2
3

√
πε3+[1 + η]3 (48)

which is the coefficient of the Debye-Hückel limiting law
term (order 3/2 in c̃+). It is useful to define the function

H(x) =
11
6

− 2γ +
1
x3

e−x
[
2 − x+ x2

]− Γ (0, x) − lnx,

(49)

where γ is the Euler’s constant and Γ (a, b) is the incom-
plete Gamma-function [13]. Using H(x), the higher order
coefficients can be explicitly written as

B2 = −π
3
ε3+

{
−H(ε+) − ln ε+ + 2η2

[
H

(
− 2ηε+

1 + ξ

)

+ ln
(

2ηε+
1 + ξ

)]
− η4

[
H

(
η2ε+
ξ

)
+ ln

(
η2ε+
ξ

)]

− 2η2
[
1 − η2

]
ln η +

1
2
[
1 − η2

]2 ln
(
36πε3+[1 + η]

)}
(50)

B2log = −π
6
ε3+
[
1 − η2

]2
, (51)

B5/2 =
2
3
[
πε3+

]3/2[1 + η
]1/2{5

8
+H (ε+) + ln (ε+)

+η6

[
5
8

+H
(
η2ε+
ξ

)
+ln

(
η2ε+
ξ

)]
+2η3

[
5
8

+H
(
− 2ηε+

1 + ξ

)
+ ln

(
2ηε+
1 + ξ

)]
+

1
8
[
1 + η

]2[5− 12η+ 17η2 − 12η3 + 5η4
]

− 2η3
[
1 + η3

]
ln η − 1

2
[
1 + η3

]2 ln
(
64πε3+

[
1 + η

])}
(52)

and

B5/2log = −1
3
[
πε3+

]3/2[1 + η
]1/2[1 + η3

]2
. (53)

The free energy equation (43) is the exact low density ex-
pansion of the asymmetric TCPHC and constitutes the

main result of this paper. The only parameter that is de-
manded to be small is the ion density c̃+, that means,
this result is non-perturbative in the coupling ε+, charge
ratio η and size ratio ξ.

We chose the positive ions as the “reference species”
(i.e., the expansion is done with respect to c̃+) without
any loss of generality, since the relation between c̃+ and
c̃− is fixed through the electroneutrality condition. As con-
sistency checks, we notice that our expression for f̃ is sym-
metric, as expected, with respect to the simultaneous ex-
change of d+ with d− and q+ with q−. Also, in the limit
d+ = d− and q+ = q−, we recover the same expression
as previously calculated in reference [10] for totally sym-
metric systems. Finally, as one turns off the charges in the
system (or equivalently, as one takes the limit ε+ → 0),
the pure hard-core fluid is recovered, i.e., f̃ becomes the
usual virial expansion with B3/2 and B5/2 equal to zero
and B2 given by the second virial coefficient of a two-
component hard-core gas, BHC

2 = B2(ε+ → 0), which in
our units reads

BHC
2 =

π

3

[
2 +

2ξ3

η2
+

[1 + ξ]3

2η

]
· (54)

This limit can be also understood as the high-temperature
regime: as the thermal energy largely exceeds the Coulomb
energy at contact, the hard core interaction becomes the
only relevant interaction between the particles.

3 Results

3.1 The virial coefficients

The behavior of the coefficients B2 and B5/2 as functions
of the coupling parameter ε+ are depicted in Figures 1
and 2, the behavior of B2log and B5/2log is rather trivial
and not shown graphically. In Figure 1 the ionic diameters
of positive and negative ions are kept equal, d+ = d−,
and the ratio between the charge valences, η, is varied,
while in Figure 2 the charge valences are equal and the
ratio between the ionic diameters is varied. These figures
highlight the fact that both coefficients diverge as ε+ goes
to infinity. In this limit,

B2 ≈ −π
4

[1 + ξ]4

η2

1
ε+

exp
(

2ηε+
1 + ξ

)
(55)

and

B5/2 ≈ π3/2

2
[1 + ξ]4

√
1 + η

η

√
ε+ exp

(
2ηε+
1 + ξ

)
· (56)

Note that B5/2 diverges faster (and with opposite sign)
than B2, reflecting that this low-density expansion is
badly converging, as we will discuss further below. The
exponentially divergent behavior of B2 and B5/2 when
ε+ → ∞ is due to the increasing importance of the inter-
action between oppositely charged particles (ionic pairing)
as the coupling parameter increases [14–16], correspond-
ing for instance to lower temperatures. This is confirmed
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by noting that the argument in the exponential occur-
ring in both asymptotic forms equations (55, 56), viz.
2 η ε+/[1+ ξ], can be re-expressed as 2 q+ q− `B/[d+ +d−],
which is the coupling between positive and negative ions
(in this case, the ratio between the Coulomb contact en-
ergy between oppositely charged ions and the thermal en-
ergy kBT ).

To estimate roughly the ionic density c̃+ up to which
the expansion in equation (43) is expected to be valid, we
use the following simple criterion: the terms proportional
to BDH and B5/2 give the same contribution to the free
energy when |BDH|c̃3/2+ = |B5/2|c̃5/2+ or, in other words, at
a critical density c̃+ = |BDH/B5/2|. Note that we set up
this criterion separately for the integer and fractional co-
efficients, since the scaling behavior for the two different
classes is very different and no meaningful results can be
obtained by mixing them. The analogous criterion for the

integer terms leads to a critical density c̃+ = (1+1/η)/|B2|
where for the ideal contribution in equation (47) we re-
place the logarithmic term by a linear one (which is the
ideal contribution to the osmotic pressure). We tacitly as-
sume that the higher-order terms (which we have not cal-
culated) show the same relative behavior, an assumption
which seems plausible to us but which we cannot check. In
Figure 3 we show the estimate for the critical densities ob-
tained from (a) the ratio of the integer terms and from (b)
the ratio of the fractional terms. In (a) the critical density
settles at a finite value for vanishing coupling parameter
ε+ → 0, and decreases to zero for increasing coupling pa-
rameter (the divergence in the curves at finite value of ε+
is not significant since it is caused by a change in sign of
B2). This means that for small coupling constants the in-
teger coefficients are expected to show regular convergence
behavior for not too large concentrations. For large values
of ε+ on the other hand, the range of densities which can
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be described by the expansion quickly goes to zero. In (b)
the displayed behavior is more complex. The expansion of
the coefficient B5/2 for small values of the coupling pa-
rameter ε+ leads to

B5/2 = π3/2
√

1 + η(ξ − 1)2(ξ + 1)ε3/2+

−π3/2
√

1 + η
(
2 + 2η2ξ2 + η(1 + ξ)2

)
ε
5/2
+ (57)

plus terms with scale as higher powers in ε+. The impor-
tant point is that except for the singular case ξ = 1, that
is for particles of identical radius, the leading term of B5/2

scales as ε3/2+ and thus identical to the lower leading term
BDH. In the case ξ = 1 the leading term scales as ε5/2+ and
thus shows a different scaling behavior than BDH. In Fig-
ure 3b this difference is clearly seen: for ξ = 1 the curves
diverge as ε+ → 0 and the convergence of the fractional
density terms in the series is expected to be guaranteed.
For ξ = 0.1 the behavior is similar to the results in (a),
showing a saturation at a finite value as ε+ → 0 (and
an insignificant divergence at finite ε+). All curves go to
zero as the coupling parameter grows. In conclusion, the
reliability of the low-density expansion becomes worse as
the coupling parameter increases, but one can always find
a window of small densities within which the expansion
should work.

Finally, we mention that in a different calculation
scheme, based on an integral-equation-procedure within
the so-called mean-spherical-model (MSM) approxima-
tion, similar results for the free energy and other ther-
modynamic functions have been obtained [17–19]. Those
results also reproduce the limiting laws, namely the hard-
core behavior as the coupling parameter goes to zero, and
the leading Debye-Hückel correction at low density, and
give a quite satisfactory description even for much larger
values of the density. It is important to note, however,
that the next-leading (beyond Debye-Hückel) terms in the
low-density expansion are not correctly reproduced by the
MSM approximation.

3.2 The colloidal limit

In colloidal suspensions, flocculation or coagulation
(driven by attractive van der Waals interaction between
colloidal particles) can be prevented by the presence of
repulsive electrostatic forces. These suspensions are typi-
cally quite dilute, with volume fractions of colloidal par-
ticles usually not higher than a few percent. The macro-
particles normally have dimensions [20–22] ranging from
10 to 1 000 nm and charges of several thousands e (elemen-
tary charge), with much smaller counterions that have a
charge of a few e. In such systems the charge and size
asymmetry between ions and counterions is immense; the
TCPHC with unconstrained charge and size asymmetry
is a suitable model for dilute colloidal suspensions, and
the free energy equation (43) can be used to study the
thermodynamic behavior of such systems.

With this in mind, let us take the following limit: as-
sume the parameters describing the positive ions (repre-
senting the colloids) d+, q+ and c̃+ fixed, and make both

η ≡ q−/q+ and ξ ≡ d−/d+ vanishingly small (this has
to be done with some care, since the limit η = 0 is not
well-defined). One can then rewrite the free energy equa-
tion (43) up to second order in c̃+ as

f̃ cl = f̃id + +Bcl
DHc̃

3/2
+ +

(
BHC,cl

2 +Bcl
2

)
c̃2+

+Bcl
2logc̃

2
+ log c̃+ +O

(
c̃
5/2
+

)
(58)

where f̃id is the ideal term equation (47) and

BHC,cl
2 =

π

3

[
2ξ3

η2
+

[1 + ξ]3

2η

]
(59)

is the hard core contribution due to the counterion–
counterion and macroion–counterion interactions only,
without the macroion–macroion contributions, which ex-
plains the difference to the full hard-core virial coefficient
in equation (54). It is necessary to treat this term sepa-
rately, as it does not have a well-defined behavior in the
double limit η → 0 and ξ → 0. The other coefficients in
equation (58) follow from equations (48, 50, 51) by per-
forming the limits Bcl

DH = BDH(η → 0, ξ → 0), Bcl
2 =

B2(η → 0, ξ → 0) − BHC,cl
2 , Bcl

2log = B2log(η → 0, ξ → 0),
and are given by

Bcl
DH = −2

3

√
πε3+, (60)

Bcl
2 =

π

3
ε3+

{
H
(
ε+
)− 1

2
ln
(
36πε+

)}
+
π

2
ε+, (61)

Bcl
2log = −π

6
ε3+. (62)

It is to be noted that the contributions in f̃id and BHC,cl
2

contain terms that scale with 1/η. For dilute colloidal sys-
tems therefore the ideal contribution of the counterions
dominates the free energy and cannot be neglected. Ef-
fects due to the electrostatic interaction between the ions
are corrections to the ideal behavior.

At this point we briefly introduce yet another model
that is also widely used to describe charged systems. It
is the one-component plasma (OCP), which in its sim-
plest form consists of a collection of N equally charged
point-like particles immersed in a neutralizing background
that ensures the global charge neutrality of the system
(in the TCPHC electroneutrality is ensured by oppositely
charged particles). The OCP, or its quantum mechanical
counter-part (“jellium”) has been used in different con-
texts in physics, as for instance to describe degenerate
stellar matter (the interior of white dwarfs or the outer
layer of neutron stars) and the interior of massive plan-
ets like Jupiter. Another example comes from condensed
matter physics, where jellium is often used as a reference
state when calculating the electronic structure of solids.
For reviews see references [23–25].

When the particles have a hard core, the OCP is called
one-component hard-core plasma (OCPHC): what we will
see next is that the electrostatic contribution to the free
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energy in dilute colloidal suspensions can be almost de-
scribed through the OCPHC. If we compare the coef-
ficients equations (51–60) with the ones previously ob-
tained [10] for the low density expansion of the OCPHC

f̃OCPHC = c̃ ln c̃− c̃+ d3/2c̃
3/2 + d2c̃

2

+ dln 2c̃
2 ln c̃+O(c̃5/2), (63)

where c̃ is the volume fraction of particles in the OCPHC,
we find (cf. Eqs. (51, 56, 57) of Ref. [10])

Bcl
DH = d3/2, (64)

Bcl
2 = d2 +

π

2
ε+ (65)

and

Bcl
2log = dln 2, (66)

where the notation used in reference [10] is kept in equa-
tion (63) and on the rhs of equations (64–66). The com-
parison between Bcl

2 and d2 is shown in Figure 4, where we
rescaled both coefficients by their value at vanishing cou-
pling, d2(ε+ = 0) = Bcl

2 (ε+ = 0) = 2π/3. This shows that,
including the order c̃2+ ln c̃+ (i.e., for very dilute colloidal
suspension), the OCPHC is almost recovered, except an
additional term in equation (65). This additional term can
be quite important at intermediate values of ε+ since it
changes the sign of the virial coefficient, as seen in Fig-
ure 3.

This is in fact what one would intuitively expect: each
macroion has around it a very large number of small neu-
tralizing counterions which act like a background. Our re-
sults show that the background formed by counterions,
which is a deformable background since the counterion
distribution is not uniform, acts almost like a rigid homo-
geneous background, as it is assumed in OCP calculations.
However, there is a small difference between the TCPHC
in this limit and the OCPHC: in the latter, the background
penetrates the particles, while in the TCPHC it cannot
(for a thorough discussion of this difference see [26]). In
our calculation, this is reflected in the c̃2+ term, where
πε+/2 is the positive extra cost in the free energy that the
OCPHC has to pay (at this order) to expel the background
from the hard-core particles. The first consequence of the

(a)
background

colloid

(b)

Fig. 5. A colloidal particle (with diameter d+ and charge va-
lence q+) in the OCPHC model (a) with and (b) without the
penetrating background.

non-penetrating background is that the effective charge of
the colloids increases by exactly the amount of background
charge that is expelled from the colloidal interior. A simple
calculation shows that the increased effective charge qeff+
of colloids for the non-penetrating background turns out
to be

qeff+ =
q+

1 − πc̃+/6
· (67)

In the low-density expansion of the OCPHC, equa-
tion (63), one would have to reexpand all coefficients with
respect to the density, using equation (67). However, since
the leading term which depends on the charge q+ goes like
c̃
3/2
+ , the effect would come in at order c̃5/2+ and therefore

is not responsible for the additional term in equation (65).
The reason for the extra term in equation (65) has to do
with an increase of the self-free-energy of a colloidal parti-
cle, which can be understood in the following way: assume
that the OCPHC is very dilute, such that each colloidal
particle and its neutralizing background form a neutral
entity (in the spirit of the cell model, see for instance
Ref. [27]) that can be regarded independent from the other
particles. The free energy difference per colloidal particle
between a system without penetrating background and
with penetrating background (Fig. 5) is then given by two
contributions: one coming from the entropy lost by the
background (formed by N− counterions) since it cannot
penetrate the macroions, given by

∆Fen
N+kBT

= −N−
N+

ln(1 − πc̃+/6) =
N−
N+

πc̃+
6

+O
(
c̃2+
)
.

(68)

This is one of the contributions to the second virial co-
efficient due to the hard-core interaction, and already in-
cluded in equation (59). This term does not depend on
the coupling ε+, and therefore has nothing to do with
the extra term in equation (65). The second contribu-
tion to the self-energy is electrostatic in origin. Defining
the charge distributions for the situations in Figure 4 as
ρa(r) = q+δ(r) − ρ0 when the background can enter the
colloids and ρb(r) = q+δ(r)−ρ0

[
1−θ(d+/2−r)] when the

background cannot enter the colloids (where ρ0 = c+q+
is the background charge density and θ(x) = 1 if x > 0
and 0 otherwise), the electrostatic self-energy difference
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between the two cases reads

∆Fel

N+kBT
=

1
2

∫
drdr′

{
ρb(r)vc(r − r′)ρb(r′)

− ρa(r)vc(r − r′)ρa(r′)
}

= ρ0q+4π`B
∫ d+/2

0

dr r +O
(
c2+
)

=
π

2
c̃+ε+ +O

(
c2+
)
. (69)

It follows that the free energy difference per volume is
given by

∆f̃ =
c̃+∆Fel

N+kBT
=
πc̃2+ε+

2
· (70)

Note that this is a positive contribution to the c̃2 term
with the same coefficient as the extra term in equa-
tion (65). Therefore, we conclude that this extra term is
due to the electrostatic energy associated with expelling
the background from the colloidal volume. This is in ac-
cord with more general results on the difference between
OCPHC models with penetrating and excluded neutral-
ising backgrounds [26]. In summary, whenever using the
OCPHC to describe highly asymmetric charged systems
such as colloids, one has to to take into account the exclu-
sion of the background from the macroions. As we demon-
strated, if this is taken into account, then the TCPHC
maps exactly (at least up to order c̃2+) onto the OCPHC.

3.3 Ionic activity and diameters

In electrochemistry, it is usual to define the mean activity
λ± of an electrolyte as

λ± ≡
[
λ
q−
+ λ

q+
−
]1/[q++q−]

, (71)

where λ+ and λ− are respectively the fugacities of the
positive and the negative ions. The mean activity coef-
ficient f± is the ratio between the mean activity of the
electrolyte and that of an ideal gas, in general given by

f± = exp

(
q−

q+ + q−
∂f̃ex
∂c̃+

)
, (72)

for a two-component system where the positively charged
particles are used as reference species in the same way as in
equation (43). f̃ex, the excess free energy, is the difference
between the free energy of the interacting systems and the
free energy of an ideal gas, i.e., f̃ex = f̃ − f̃id.

There are different ways of measuring f±, as for in-
stance, through the change of the freezing point of the sol-
vent (usually water) with the addition of salt [28], by mea-
suring the change of the potential difference between the
electrodes of a concentration cell as salt is added [28,29]
(potentiometry), or by direct measurement of the solvent

activity through vapor exchange between a solution with
known activity and the sample [28,30] (isopiestic). Al-
though dating from the early nineteen hundreds, these are
still the most common techniques used today, especially
the potentiometry, which is regarded as the most precise
technique of all. The values of f± are tabled as function of
the salt concentration for many different electrolytes [28,
31,32].

From the free energy equation (43) and the definition
equation (72) we can obtain the low density expansion for
the mean activity coefficient of a q+:q− salt. To compare
with experimental results, it is useful to note that c̃+ =
6.022×10−4q−d3

+%, where d+ is in angströms and % is the
salt concentration in moles/liter. After the appropriate
expansion, f± reads

f± = 1 + νDH%
1/2 + ν1%+ ν1log% ln%+ ν3/2%

3/2

+ ν3/2log%
3/2 ln %+O(%2) (73)

(the order 3/2 in the mean activity coefficient is the
one consistent with a free energy given up to 5/2). The
coefficients νDH, ν1, etc. are given in Appendix, equa-
tions (99–103). Experimentally determined activity coef-
ficients are typically measured at constant pressure, while
the theoretical results are obtained for constant volume.
Note that in the limit of vanishing density, the distinc-
tion between the activities calculated in the Lewis-Randall
or in the McMillan-Mayer descriptions (constant pressure
versus constant volume ensemble) becomes negligible [33]
in comparison to the first corrections to ideal behavior.
The experimental data at low density can be directly com-
pared with the theory without the need to convert between
the two ensembles.

At infinite dilution, the mean activity coefficient equa-
tion (73) goes to 1, which is the prediction for an ideal
gas. The first correction to the ideal behavior is the term
νDH%

1/2, which is the prediction one obtains from the
Debye-Hückel limiting law (DHLL), and is independent
of the ionic diameters, see equation (99). This means that
there is always a range of concentrations where different
salts (but with the same q+ and q−) will deviate from ide-
ality, but have the same activity. At higher concentrations,
other terms have to be taken into account, and the ionic
sizes begin to play an important role. In fact, as one fixes
`B (' 7.1 Å in water at 25 ◦C) and the valences q+ and
q−, the only free parameters in the rhs of equation (73) are
the ionic diameters d+ and d−, which can be used in the
theoretical predictions to fit the experimental values. This
leads to effective equilibrium values of the ionic diameters
(when in solution), which we call the “thermodynamic di-
ameter”, in contrast to the bare diameter [1] (obtained
through crystallographic methods) and the hydrodynamic
diameter (obtained from mobility measurements [34]). By
construction, it is this diameter which should be used in
equilibrium situations if one wants to describe an elec-
trolyte solution as a TCPHC, as for example computer
simulations of electrolytes.
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Fig. 6. Experimental [31,35] and fitted theoretical mean activ-
ity coefficient f± for various salts as a function of the density %
(in mole/liter), for various 1:1 salts, viz. HCl (triangles and dot-
dashed line, d = 4.0 Å), NaCl (stars and dotted line, d = 3.7 Å)
and KCl (diamonds and dashed line, d = 3.6 Å). The full line
denotes the Debye-Hückel limiting law, which scales with %1/2.
The fit was done using the data points shown (up to % = 0.02
mole/liter).

3.3.1 Fitting assuming one mean diameter

We now show the fitting procedure assuming that d+ =
d− = d, where d is the mean diameter. We also restrict
here this procedure to 1:1 salts, where more experimen-
tal data is available at reasonably low densities (below
∼0.05 mole/liter). For asymmetric salts, this method de-
mands precise data at the range below ∼ 0.01 mole/liter,
where Debye-Hückel is often assumed to account for all
effects and few experimental points are available.

The assumption of equal ionic sizes has been often used
in the past to fit activities to modified Debye-Hückel the-
ories [28] to account for the ionic sizes (as previously men-
tioned, the Debye-Hückel limiting law is insensitive to it).
Since we force the two diameters to be equal, we only need
the expansion for f± up to linear order since this will de-
termine uniquely the single unknown parameter. From the
experimental data f exp

± [31,35] we subtract the diameter-
independent term and obtain the difference

∆f± ≡ f exp
± − νDH%

1/2 = νexp
1 %+O

(
%(3/2)

)
. (74)

The fit to this function leads to the coefficient of the linear
term νexp

1 , and that can be used to determine the diameter
by solving the equation ν1(d) = νexp

1 (with d as unknown).
In Figure 6 we show the experimental [31,35] f± for HCl,
NaCl and KCl and the theoretical results (up to linear
order in %) using, respectively, the diameters 4.0 Å, 3.7 Å
and 3.6 Å. These values come from the fitting described
above applied to the experimental data in the range % =
0.01 to 0.05 mole/liter. The diameters obtained are very
close to the ones obtained in reference [35] with a similar
fitting, but using the DH theory with an approximate way
to incorporate the ionic sizes.

The fact that dHCl > dNaCl > dKCl, which is the op-
posite to the sequence of bare diameters, is a consequence
of the existence of hydration shells around the ions which
tend to be larger for smaller bare ion size [1]. Notice how-
ever that the values obtained here lie between the bare

diameters and the hydrated values available in the liter-
ature. This is not surprising since the effective hard-core
size simultaneously reflects both the presence of the hy-
dration shells and the “softness” of the outer water layer
as two oppositely charged ions approach each other.

3.3.2 Fitting assuming two diameters

If we now assume that both d+ and d− are unconstrained,
we have to use one more term in the expansion of the
activity coefficient and solve the coupled equations

ν1(d+, d−) = νexp
1

ν3/2(d+, d−) = νexp
3/2 (75)

where the coefficients νexp
1 and νexp

3/2 are obtained by fitting
the function

∆f± = f exp
± − νDH%

1/2 − ν1log% ln %

= νexp
1 %+ νexp

3/2%
3/2 +O(%3/2 ln %). (76)

For the actual fitting we divide by the density and obtain

∆f±
%

= νexp
1 + νexp

3/2%
1/2. (77)

Note that we subtracted the term proportional to % ln %,
since like the DH term it is independent of the ionic diam-
eters. What is interesting about this fitting procedure is
that the two ionic diameters are independent parameters,
that is, the effective sizes obtained through this fitting do
not depend on the size of a “reference” ion, contrary to
what happens when using crystallographic methods [36].
The method we show here can in principle lead to use-
ful results, as long as the experimental data is accurate
enough at very low densities, as we now demonstrate.

Figure 7 shows the mapping between the parameter
space of ionic diameters and the two coefficients ν1 and
ν3/2 (for a 1:1 salt in water at room temperature). The
mapping is restricted to the range 3 Å < d+ < 27 Å
and 3 Å < d− < 27 Å. This allows the “inverse map-
ping” between the (ν1;ν3/2)–space and the (d−;d+)–space:
any system with ionic diameters within the values above
should have the coefficients ν1 and ν3/2 inside the region
in the (ν1;ν3/2)–space, as shown in Figure 7. One prob-
lem becomes obvious: the coefficient ν3/2 is larger than
the coefficient of the linear term, ν1, meaning that experi-
mental data at very low concentrations are needed. As an
example, Figure 8 shows ∆f±/% for NaCl [31] as a func-
tion of %1/2, which should be asymptotically linear in the
limit %→ 0 and therefore give the coefficients ν1 and ν3/2
by a simple linear fit according to equation (77). The lines
shown are two possible asymptotic linear fits to the exper-
imental points (line a is given by∆f±/% = 2.59−9.94%1/2,
and line b by 2.47 − 6.00%1/2). The inset to Figure 8
gives the corresponding positions in the (ν1;ν3/2)–space
(cf. Fig. 7) for the two lines. Clearly, only one of the fits
(line b) leads to reasonable values for the diameters (be-
tween 3 and 9 Å as seen from the position of point b in the
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Fig. 7. Mapping ionic diameters of a 1:1 salt in water at room
temperature into coefficients of the rescaled activity coefficient
∆f± defined in equation (77). The inset shows different paths
in the (d−;d+)–space (with the ionic diameters between 3 Å
and 27 Å) which are mapped into lines in the (ν1;ν3/2)–space,
as determined by equations (100–102). By knowing the values
of ν1 and ν3/2 for a certain salt at very low densities, one can
make the “inverse-mapping” and extract the values of d− and
d+. The solid line, the symmetric case with d+ = d−, is the
lower envelope off all other lines which are obtained by varying
one diameter while keeping the other fixed.
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Fig. 8. Fitting procedure (NaCl in water at room temperature)
for two unconstrained diameters. Lines a and b correspond to
two possible asymptotic fits of ∆f±/% as % → 0 (see text).
From these lines one can extract ν1 and ν3/2, which allows
determination of the ionic diameters (inset, which shows a part
of the mapping done in Fig. 7). Notice that while the two lines
are reasonable asymptotic fits to the data, one (line b) leads
to acceptable values for the ionic diameters, d+ = 3.8 Å and
d− = 5.4 Å, while the other (line a) leads to values that lie
outside the range 3 to 27 Å (which is not reasonable). This
means that more precise data in the range % < 0.01 mole/liter
is needed to obtain the correct values for the diameters with
this method. Experimental data from reference [31].

inset, d+ = 3.8 Å and d− = 5.4 Å as obtained by solving
Eq. (75)), while the other fit (line a) leads to unreasonable
values for the diameters (outside the range 3 to 27 Å). In
other words, the asymptotic extrapolation of the experi-
mental data is very sensitive to small errors, and in order
to obtain the diameters with this method one needs more
accurate data at very low densities (which to the best of
our knowledge is not available in the literature). Although
NaCl was used as example, the situation is identical for
other salts.

4 Conclusions

Using field theoretic methods we obtained the exact low
density (“virial”) expansion of the TCPHC up to order
5/2 in density. In its general form, the model can be ap-
plied to both electrolyte solutions and dilute colloidal sus-
pensions (when the van der Waals forces are unimpor-
tant); the free energy derived here provides a unified way
for handling both systems in the limit of low concentra-
tion. As the calculations show, the generalization to short-
ranged potentials other than hard core is possible.

The behavior of the coefficients B2 and B5/2 suggests
that the series is badly convergent, meaning that the inclu-
sion of higher order terms does not necessarily extend the
validity of the free energy to larger densities. We saw that
the divergent behavior of these coefficients is related to the
ionic pairing [14–16] which is favored as the coupling in-
creases (this is not present e.g. in the OCPHC [10]). This
also means that such a low-density expansion is not very
useful to study the phase behavior [37] of ionic systems:
in the situation of phase-separation between a very dilute
phase and a dense phase, typically the average density in
the dense phase already falls outside the range of validity
of the low density expansion.

In applying our results to colloidal systems we con-
cluded that at low density the counterion entropic contri-
bution dominates over the electrostatic contribution due
to the macroions; the latter contribution can be described,
in this limit and up to this order, by an OCPHC corrected
by effects due to the exclusion of counterions from the col-
loidal particles.

Finally, we used the theoretical results for the mean
activity coefficient to fit experimental data and extract
effective ionic sizes. In the simplest fitting, where we as-
sumed the two ionic diameters to be equal, we obtained
sizes that are reasonable and close to what one would ex-
pect from the results obtained by other methods. For the
more interesting case where the two ionic sizes are taken as
free parameters and determined independently, we showed
that one would need more experimental data for the mean
activity coefficient at very low densities (which, to the best
of our knowledge, is not available in the literature) to ob-
tain the correct values for the diameters. With the proper
experimental data it would then be a simple matter to ob-
tain the effective thermodynamic ionic sizes, which could
serve as useful input for computer simulations of two-
component-plasmas with hard-cores to model electrolyte
solutions.

We thank N. Brilliantov and H. Löwen for useful discus-
sions. AGM acknowledges the support from FCT through grant
PRAXIS XXI/BD/13347/97 and DFG.

Appendix

Averages needed for Z1 and Z2

The following expressions were used to obtain equa-
tions (28, 29). In order to have more compact formulas
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we use the Greek letters α and β instead of + or −. For
instance, α qα means both +q+ and −q−〈

hα(r)
〉

= eq
2
αvc(0)/2, (78)〈

e−ıαqαφ(r)
〉

= e−q
2
αvDH(0)/2, (79)〈

hα(r)hβ(r′)
〉

= e−ωαβ(r−r′)+
[
q2αvc(0)+q

2
βvc(0)

]
/2,
(80)〈

e−ıα qαφ(r)−ıβ qβφ(r′)〉 = e−
[
q2αvDH(0)+q2βvDH(0)

]
/2

× e−αβ qαqβvDH(r−r′) (81)

〈
φ2(r′)e−ıα qαφ(r)

〉
= e−q

2
αvDH(0)/2

×
[
vDH(0) − q2αv

2
DH(r − r′)

]
. (82)

The brackets 〈· · · 〉 denote averages over the fields φ and
ψα where ω−1 and v−1

DH are the propagators.

The coefficients in the grand-canonical free energy

We give here the explicit expressions for the coefficients g̃,
equation (32). Using the function H(x), defined in equa-
tion (49), the coefficients read

m1 =
π

3
q6+`

3
B

d3
+

{
−H

(
q2+`B

d+

)
+ ln

(
3d+

`B

)}
, (83)

m2 =
π

3
q6−`3B
d3
+

{
−H

(
q2−`B
d−

)
+ ln

(
3d−
`B

)}
, (84)

m3 =
2π
3
q3+q

3−`3B
d3
+

{
H

(
2q+q−`B
d++d−

)
− ln

(
3[d++d−]

2`B

)}
,

(85)

n1 =
π

3
q8+`

3
B

d3
+

{
−5

8
− 2H

(
q2+`B

d+

)
+ ln

(
12d2

+

`2B

)}
, (86)

n2 =
π

3
q8−`3B
d3
+

{
−5

8
− 2H

(
q2−`B
d−

)
+ ln

(
12d2−
`2B

)}
, (87)

n3 =
2π
3
q3+q

3−`3B
d3
+

{
−5

8
q+q−+

[q+− q−]2

2
H

(
−2q+q−`B
d++d−

)
+ q+q− ln

(
2[d++d−]

`B

)
− q2++q2−

2
ln
(

3[d++d−]
2`B

)}
,

(88)

p1 =
π

3
q6+`

3
B

d3
+

, p2 =
π

3
q6−`3B
d3
+

, p3 = −2π
3
q3+q

3−`3B
d3
+

,

(89)

r1 =
2π
3
q8+`

3
B

d3
+

, r2 =
2π
3
q8−`

3
B

d3
+

, (90)

r3 =
2π
3
q3+q

3
−`

3
B

d3
+

[
q+q− − q2+ + q2−

2

]
, (91)

s1 =
q4+
8
, s2 =

q4−
8
, t0 =

d3
+

12π`3B
, t1 =

q6+
48
, t2 =

q6−
48

·
(92)

The coefficients in the fugacity

In equation (39) we define the fugacity of negative ions
λ̃− as an expansion in terms of λ̃+. The coefficients a0,
a1, etc. are determined by the condition of global elec-
troneutrality. They are given by

a0 =
q+
q−
, (93)

a1 =
q2+
q−

[
q2+ − q2−

]√π`3B
d3
+

[
1 +

q−
q+

]
, (94)

a2 =
q+
q2−

[−2m2q+ + 2m1q− +m3[q1 − q2]
]

+
π

6
q2+`

3
B

q−d3
+

[
q+ + q−

]2[
7q3+ − 9q2+q− + 2q3−

]
+
π

3
q2+`

3
B

q−d3
+

[
q5+ − q3+q

2
− + q2+q

3
− − q5−

]
× ln

(
4π`3B
d3
+

q+
[
q+ + q−

])
, (95)

a3 =
π

3
q2+`

3
B

q−d3
+

[
q5+ − q3+q

2
− + q2+q

3
− − q5−

]
, (96)

a4 =
`
3/2
B

24q3−

√
πq+ (q+ + q−)

×
{
24n1

[
5q+q2− − q3−

]
+ 24n2

[
q3+ − 5q+q2−

]
+ 72n3

[
q2+q− − q+q

2
−
]
+ 24m1

[
q2+q

3
− − 3q+q4−

]
+ 24m2

[−4q4+q− − q3+q
2
− + 7q2+q

3
−
]

+ 12m3

[
2q4+q− − q3+q

2
− − 6q2+q

3
− + 5q+q4−

]
+
π`3B
d3
+

q2+q
2
−[q+ + q−]2

[
26q5+ − 34q4+q−

− 31q3+q
2
− + 67q2+q

3
− − 45q+q4− + 17q5−

]}
+
π3/2

6
q
5/2
+ `

9/2
B

q−d
9/2
+

[
q+ − q−

][
q+ + q−

]5/2
× [10q4+ − 11q3+q− + 13q2+q

2
− − 4q+q3− + 3q4−

]
× ln

(
4π`3B
d3
+

q+
[
q+ + q−

])
, (97)

a5 =
π3/2

6
q
5/2
+ `

9/2
B

q−d
9/2
+

[
q+ − q−

][
q+ + q−

]5/2
× [10q4+ − 11q3+q− + 13q2+q

2
− − 4q+q3− + 3q4−

]
× ln

(
4π`3B
d3
+

q+
[
q+ + q−

]) · (98)

Notice thatm1,m2, etc. were defined in equations (83–92).

The coefficients in the mean activity coefficient

In equation (73) we obtained the low-density expansion of
the mean activity coefficient of ionic solutions where the
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ions have valences q+ and q− and effective diameters d+

and d− (in angströms). Defining ω ≡ 6.022× 10−4`3Bq
6
+q−

(with η ≡ q−/q+ and ξ ≡ d−/d+), the coefficients in equa-
tion (73) read

νDH = −η
√
πω[1 + η], (99)

ν1 =
πωη

6[1 + η]

{
−1 + 3η + 8η2 + 3η3 − η4 + 4

[
H (ε+)

+ ln (ε+)
]

+ 4η4

[
H

(
η2ε+
ξ

)
+ ln

(
η2ε+
ξ

)]
− 8η2

[
H

(
− 2ηε+

1 + ξ

)
+ ln

(
2ηε+
1 + ξ

)]
+ 8η2[1 − η2] ln(η) − [2 − 4η2 + 2η4

]
× ln (36πω[1 + η])

}
, (100)

ν1log = −πωη
3

[1 − η]2[1 + η], (101)

ν3/2 =
η[πω]3/2

24
√

1 + η

{
42 − 6η − 14η2 + 68η3 − 14η4 − 6η5

+ 42η6 + 40
[
1 − 2η

5

] [
H (ε+) + ln (ε+)

]
+ 40η6

[
1 − 2

5η

] [
H

(
η2ε+
ξ

)
+ ln

(
η2ε+
ξ

)]
+ 112η3

[
H

(
− 2ηε+

1 + ξ

)
+ ln

(
2ηε+
1 + ξ

)]
− 16η3

[
7 − 2η2 + 5η3

]
ln(η)

+ 8η
[
1 − η2

]2
ln (36πω[1 + η])

− 20
[
1 + η3

]2 ln (64πω[1 + η])
}
, (102)

ν3/2log = −η[πω]3/2

6

√
1 + η

× [5 − 7η + 7η2 + 7η3 − 7η4 + 5η5
]
. (103)
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